Functional and molecular characterization of the fluid secretion mechanism in human parotid acinar cells.
نویسندگان
چکیده
The strategies available for treating salivary gland hypofunction are limited because relatively little is known about the secretion process in humans. An initial microarray screen detected ion transport proteins generally accepted to be critically involved in salivation. We tested for the activity of some of these proteins, as well as for specific cell properties required to support fluid secretion. The resting membrane potential of human acinar cells was near -51 mV, while the intracellular [Cl-] was approximately 62 mM, about fourfold higher than expected if Cl ions were passively distributed. Active Cl- uptake mechanisms included a bumetanide-sensitive Na+ -K+ -2Cl- cotransporter and paired DIDS-sensitive Cl-/HCO3- and EIPA-sensitive Na+/H+ exchangers that correlated with expression of NKCC1, AE2, and NHE1 transcripts, respectively. Intracellular Ca2+ stimulated a niflumic acid-sensitive Cl- current with properties similar to the Ca2+ -gated Cl channel BEST2. In addition, intracellular Ca2+ stimulated a paxilline-sensitive and voltage-dependent, large-conductance K channel and a clotrimazole-sensitive, intermediate-conductance K channel, consistent with the detection of transcripts for KCNMA1 and KCNN4, respectively. Our results demonstrate that the ion transport mechanisms in human parotid glands are equivalent to those in the mouse, confirming that animal models provide valuable systems for testing therapies to prevent salivary gland dysfunction.
منابع مشابه
Apical Ca-activated potassium channels in mouse parotid acinar cells
The major physiological function of parotid acinar cells is the production of saliva, a watery fluid containing electrolytes and a complex mixture of proteins (Cook et al., 1994; Melvin et al., 2005). The driving force for fluid and electrolyte secretion is the vectoral, trans-epithelial movement of Cl. Cl is accumulated intracellularly via the concerted effort of several transporters, and afte...
متن کاملInvolvement of cAMP response element-binding protein activation in salivary secretion.
OBJECTIVE Saliva secretion is mediated by cAMP and the calcium signaling pathway in salivary acinar cells. The PKA signaling pathway plays an important role in protein secretion through the activation of cAMP, in fluid secretion through the elevation of intracellular calcium and in the activation of cAMP response element-binding protein (CREB), which is involved in these signaling cascades. In ...
متن کاملSuppression of carbachol-induced oscillatory Cl- secretion by forskolin in rat parotid and submandibular acinar cells.
Sympathetic stimulation induces weak salivation compared with parasympathetic stimulation. To clarify this phenomenon in salivary glands, we investigated cAMP-induced modulation of Ca(2+)-activated Cl(-) secretion from rat parotid and submandibular acinar cells because fluid secretion from salivary glands depends on the Cl(-) secretion. Carbachol (Cch), a Ca(2+)-increasing agent, induced hyperp...
متن کاملFunctional and Molecular Characterization of C91S Mutation in the Second Epidermal Growth Factor-like Domain of Factor VII
Background: Coagulation Factor VII is a vitamin K-dependent serine protease which has a pivotal role in the initiation of the coagulation cascade. The congenital Factor VII deficiency is a recessive hemorrhagic disorder that occurs due to mutations of F7 gene. In the present study C91S (p.C91S) substitution was detected in a patient with FVII deficiency. This mutation has not b...
متن کاملCl(-)/HCO(3)(-) exchange is acetazolamide sensitive and activated by a muscarinic receptor-induced [Ca(2+)](i) increase in salivary acinar cells.
Large volumes of saliva are generated by transepithelial Cl(-) movement during parasympathetic muscarinic receptor stimulation. To gain further insight into a major Cl(-) uptake mechanism involved in this process, we have characterized the anion exchanger (AE) activity in mouse serous parotid and mucous sublingual salivary gland acinar cells. The AE activity in acinar cells was Na(+) independen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 292 6 شماره
صفحات -
تاریخ انتشار 2007